439 research outputs found

    Multi-Field Synergy Process for Polymer Plasticization: A Novel Design Concept for Screw to Facilitate Phase-to-Phase Thermal and Molecular Mobility

    Get PDF
    A novel concept of screw design has been proposed considering the multi-field synergy principle to facilitate phase-to-phase thermal and molecular mobility; subsequently, a torsion element has been designed. This new screw design allows an innovative and effective way to resolve a growing challenge in polymer process engineering, especially for nanocomposites or biopolymers, that is, an inadequate control of mass transfer and thermal management for multicomponent melt flows through narrow channels during extrusion or injection. The adaption of torsion element in the screw facilitated the plasticization mixing and thermal distribution in polymer melts, and the torsional flow induced by the torsion elements shows a synergistic effect on the melt-phase mass flow and the thermal flow field. The latter effect enhances the mass and heat transfer of heterogeneous polymer systems and realizes effective heat management to achieve properly uniform temperature field

    Contribution of CRISPRable DNA to human complex traits

    Get PDF
    CRISPR-Cas is a powerful genome editing tool for various species and human cell lines, widely used in many research areas including studying the mechanisms, targets, and gene therapies of human diseases. Recent developments have even allowed high-throughput genetic screening using the CRISPR system. However, due to the practical and ethical limitations in human gene editing research, little is known about whether CRISPR-editable DNA segments could influence human complex traits or diseases. Here, we investigated the human genomic regions condensed with different CRISPR Cas enzymes’ protospacer-adjacent motifs (PAMs). We found that Cas enzymes with GC-rich PAMs could interfere more with the genomic regions that harbor enriched heritability for human complex traits and diseases. The results linked GC content across the genome to the functional genomic elements in the heritability enrichment of human complex traits. We provide a genetic overview of the effects of high-throughput genome editing on human complex traits

    ChIP-Hub provides an integrative platform for exploring plant regulome

    Get PDF
    Plant genomes encode a complex and evolutionary diverse regulatory grammar that forms the basis for most life on earth. A wealth of regulome and epigenome data have been generated in various plant species, but no common, standardized resource is available so far for biologists. Here, we present ChIP-Hub, an integrative web-based platform in the ENCODE standards that bundles >10,000 publicly available datasets reanalyzed from >40 plant species, allowing visualization and meta-analysis. We manually curate the datasets through assessing ~540 original publications and comprehensively evaluate their data quality. As a proof of concept, we extensively survey the co-association of different regulators and construct a hierarchical regulatory network under a broad developmental context. Furthermore, we show how our annotation allows to investigate the dynamic activity of tissue-specific regulatory elements (promoters and enhancers) and their underlying sequence grammar. Finally, we analyze the function and conservation of tissue-specific promoters, enhancers and chromatin states using comparative genomics approaches. Taken together, the ChIP-Hub platform and the analysis results provide rich resources for deep exploration of plant ENCODE. ChIP-Hub is available at https://biobigdata.nju.edu.cn/ChIPHub/.Peer Reviewe

    Total genetic contribution assessment across the human genome

    Get PDF
    Quantifying the overall magnitude of every single locus' genetic effect on the widely measured human phenome is of great challenge. We introduce a unified modelling technique that can consistently provide a total genetic contribution assessment (TGCA) of a gene or genetic variant without thresholding genetic association signals. Genome-wide TGCA in five UK Biobank phenotype domains highlights loci such as the HLA locus for medical conditions, the bone mineral density locus WNT16 for physical measures, and the skin tanning locus MC1R and smoking behaviour locus CHRNA3 for lifestyle. Tissue-specificity investigation reveals several tissues associated with total genetic contributions, including the brain tissues for mental health. Such associations are driven by tissue-specific gene expressions, which share genetic basis with the total genetic contributions. TGCA can provide a genome-wide atlas for the overall genetic contributions in each particular domain of human complex traits. Quantifying the effects of individual loci on the human phenome is a challenging task. Here, the authors introduce a modelling technique, TGCA, that assesses total genetic contribution per locus and apply this to UK Biobank phenotype domains, revealing top loci and links to tissue-specific gene expression
    • 

    corecore